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Spontaneous Magnetization of Randomly 
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We consider Ising ferromagnets on random subgraphs of the square lattice. 
These are obtained by independent random selections either of sites or of bonds. 
We assume that for each site (or, respectively, bond) the probability of being 
selected exceeds the critical percolation probability. Then, at sufficiently low 
temperatures and zero external field, spontaneous magnetization occurs. Some 
further related results are obtained. 
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1. INTRODUCTION 

In the last two decades, binary alloys which consist of a ferromagnetic (or 
antiferromagnetic) and a nonmagnetic metal have received an increasing 
amount of attention. One source of interest are the surprising magnetic 
properties of the so-called spin glasses(l'2~; their magnetic concentrations 
are too small to admit a ferromagnetic (or antiferromagnetic) behavior. On 
the other hand, if the fraction of magnetic atoms is large then it is natural 
to ask for the effects of the nonmagnetic impurities on the (anti-) ferromag- 
netic phase transition. In particular, one asks for the critical concentration 
at which the (anti-) ferromagnetic behavior disappears. Theoretical models 
of such an alloy are usually of the following type: In a first stage, magnetic 
and nonmagnetic atoms are distributed at random on the sites of a lattice; 
then all atoms are frozen in position and, in a second stage, the orientations 
of the magnetic spins come to equilibrmm. Such a two-fold random 
mechanism is supposed to be a reasonable model of a quenched magnetic 
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crystal in which the motion of the impurities is slow compared with the 
magnetic relaxation. A particularly simple model is the dilute Ising ferro- 
magnetic; here the distribution of spins and impurities is governed by a 
Bernoulli law, and the spins (which are either up or down) interact via an 
attractive nearest-neighbor potential. This model was extensively studied, 
for instance, in Refs. 3-10 and the references therein. However, many 
results are restricted to Bethe lattices or are not satisfactory from a rigorous 
point of view. An interesting exception is the following theorem of Griffiths 
and Lebowitz(6): Suppose the underlying lattice is the square lattice and, 
for each site, the probability p of being occupied by a spin exceeds 
approximately 0.985; then spontaneous magnetization occurs at a finite 
temperature. However, it was expected that this would happen whenever p 
is larger than the critical percolation probability (which is approximately 
0.590); for heuristic considerations supporting this conjecture see Elliott et 

al., (4) Frisch and Hammersley, (5) and Essam. (7) Moreover, it was be- 
lieved (7) that at zero temperature the magnetization is given by the proba- 
bility that the origin belongs to an infinite cluster. In this paper we give a 
rigorous proof of these conjectures. 

Here is an outline of the paper: From a mathematical point of view, 
the description of dilute spin systems gives rise to the notion of infinite 
volume Gibbs measures on random graphs. These random graphs are 
obtained from a d-dimensional integer lattice L either by removing random 
sites or by dropping random bonds. (The case of random sites corresponds 
to the model described above; models with random bonds were already 
considered in Ref. 8, for instance.) These concepts are introduced in 
Section 2. Then we ask for conditions on the random graph and the 
interaction which imply almost sure uniqueness or nonuniqueness of the 
Gibbs measure. In Section 3 we present our results for the case of random 
sites. These are as follows. Theorem 3.1: The structure of the set of all 
Gibbs measures on a subset S of L depends only on the macroscopic shape 
of S. Theorem 3.2: In the presence of an external field, the Gibbs measure 
is almost surely unique provided the interaction is ferromagnetic and the 
distribution of the spin positions is invariant under translations. Theorem 
3.3: If the random graph is obtained by an independent thinning of the 
square lattice, such that for each site the probability of being not removed 
exceeds the critical site percolation probability, then almost surely there are 
at least two distinct Gibbs measures with respect to the ferromagnetic Ising 
potential at zero external field and sufficiently low temperatures. Long- 
range interactions and more general thinnings are considered in two 
corollaries. Section 4 contains the proofs of these results. In the final 
Section 5 we discuss the case of random bonds; all results for the site 
problem have a natural counterpart in this situation. 
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2. DESCRIPTION OF THE MODELS 

First we introduce the site model. Let L -- 7/d denote the d-dimensional 
integer lattice. Spins and impurities are distributed on L by an a priori 
random mechanism which is given by a probability space (5, d~, P); here $ 
is the set of all subsets S of L, and @ is the o-algebra on ~ which is 
generated by the mappings ~x, x ~ L, where 

{1 
ix(S)  = l s (x)  = otherwise 

If A ~ $ then we write ~A instead of (~)xEA" The probability measure P 
which governs the distribution of spins will often be assumed to be the 
Bernoulli measure Pe on $ with probability 0 < p < 1 for "success," i.e., Pp 
is the probability measure on $ for which the variables ~x, x ~ L, are 
independent and satisfy 

Pp(~x = 1) = p (2.2) 

Now suppose that S ~ $ is the set of all lattice sites which are occupied by 
a magnetic spin. Then we consider the set gs  = ( - 1 ,  1) s of all spin 
configurations on S. ~2 s is endowed with the o algebra ~ s which is 
generated by the spin variables %, x @ S; here 

ox(o 0 = % when ~o = (wy)y~s~ [~s (2.3) 

If A ~ g then we use the abbreviation o A = (O~)xE A. The interaction of the 
spins is described by a potential 

J : X - - - ) J  x 

which is a mapping from the set $0 of all nonempty finite subsets of L to 
the reals such that 

I[J[lx= ~ ]Jxl<~176 foral l  x ~ t  (2.4) 
X ~ x  

Primarily we are interested in the case when J is a ferromagnetic pair 
potential with external field h, i.e., when 

Jx=O if I X [ > 2  (2.5) 

.Ix > 0 if IX I = 2 (2.6) 

and 

. Ix=h if IXI= 1 (2.7) 

(IX[ is the cardinality of X.) J is said to be translationally invariant if 

Jx+x = Jx for all x ~ L, X ~ 5 o (2.8) 

In particular, we will consider the Ising potential with external field h and 
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coupling constant/3 > 0 which is given by 

{ i  if I X I = I  
�9 Ix = if Ixl=2 and d i a m X = l  (2.9) 

otherwise 

Now let J be given. The energy of a configuration ~% = (%)xeA EII  A in a 
finite region A c S with the boundary condition ~Os\ A = (%)x~s\A ~ ~2s\A 
is given by the Hamiltonian 

HS('~ I'~ = - E & ,~ (2.10) 
X C S  :X nAvaO 

where o~ x =  I L e x % -  The Gibbs distribution in A with boundary condi- 
tion ~ ~ fls\  A is defined by 

7s( .  I~) = exp[ - HS( �9 l ~ ) ] / z S ( ~  ) (2.11) 

here 
z S ( ~ ) =  ~] e x p [ - H S ( o ~ l ~ ) ]  (2.12) 

a~f~A 

is the partition function. The object of our investigation is the set 6s (J )  of 
all Gibbs measures (or equilibrium states) on s  with respect to J. ~s (J )  is 
the set of all probability measures/z~ on (~2 s, ffs) such that 

i~ s (a , = o~ [ g s \ , )  = ),s(w loS,A) i~ s _ a.s .  (2.13) 

for all A ~ So with A c S and all a E f~a; here we let ~-s\, denote the o 
algebra on f~s which is generated by as\ a. 

The state space of the total s~cstem is fi = ( -  1, 0, 1} L. ~ is endowed 
with the o-algebras 9-r, T ~ $; 9- r is generated by the projections 6~, 
x ~ T, which are given by 6~(t5)= ~ if o3 ~ 0. We put ~ =  ~ L. Each 
i~s ~ s ( J )  has a unique extension /7 s to a measure on (f~,~ which is 
supported by 

{8 x = O i f f x  e L \ S }  

~s is an equilibrium state of the dilute spin system when the impurities are 
fixed on L \ S .  In particular, the magnetization 

~s (6~) =-- f s~ d~t s (2.14) 

at a lattice site x ~ L equals 

= [ i ~ s ( % ) - ~ f % d ~ s  if x E S (2.15) 
( 0 if x ~ L \ S  

Now let us suppose S is randomly chosen according to a law P on ($, d~). A 
conditional equilibrium state of the dilute spin system with a priori proba- 



Spontaneous Magnetization of Randomly Dilute Ferromagnets 373 

bility P is a probability measure/7 on (~2, 62-) with the properties (i) rr(/7) 
= P, and (ii)/7(- I ~r = S) ~ ~s (J)  for P - a.a. S; here rr : f~ ~ 5 is given by 
rr(03) = {x E L : 5 x ~a 0}, and ~s (J)  = {/Ts" /*s ~ ~s (J)}. We let ~,, (J)  
denote the set of all these/7. At the end of Section 4 we will prove 

I~,,(J)l > 1 iff e ( s  ~ s : F s ( J ) I  > 1) > 0 (2.16) 

This shows that the problem of phase transitions in dilute spin systems is, 
essentially, a problem concerning Gibbs measures on random subsets of L. 
This point of view will be adopted in Section 3. 

Next we describe the bond model. Here at each lattice site x E L we 
have a spin taking the values _ 1. The spins interact via a potential J. 
However, there is an a priori random mechanism which removes the 
interaction between certain spins. (For example, one could think of random 
lattice defects or random impurities between the spins.) This random 
mechanism is described by a probability measure P on the set @ of all 
subsets B of s  is endowed with the a algebra which is generated by the 
mappings fix(B) = l s (X  ), X ~ So. Actually, only the restriction of P to the 
set of all subsets of (X E 5o:Jx 4 = 0} is relevant. In particular, if J is the 
Ising potential (2.9) then we will use the same symbol ~ to denote the set 
of all subsets of 

E =  {e C L : diame = 1} (2.17) 

the set of all edges between adjacent sites of L. The Bernoulli measure Pp 
with parameter 0 < p < 1 on @ = ~ (E) is defined by the conditions (i) the 
variables ~e, e E E, are independent, and (ii) Pe(~e = 1) = p  for all e ~ E. 
Now let J and B ~ @ be given. For each A E S 0 and all spin configura- 
tions oa a E ~A in A and boundary conditions oar\ a E f~L\a we have the 
Hamiltonian 

H~(~A I'0L,A) = - Y J~'~x (2.18) 
X E B ,  XOA#=O 

The Gibbs distribution in A with boundary condition ~ @ f~c\a and bond 
set B is given by 

Yg(" [ ~) = exp [ - Ug( .  I ~ ) ] / Zg(~ ) (2.19) 

where 

ZSa(;) = E exp[-H:~(w[~ ' ) ]  (2.20) 

A probability measure /*s on (~L, ~-L) is called a Gibbs measure with 
respect to B and J if for all A ~ S o and a, ~ ~A 

/~ts ( %  = ~176 I ~ \ a )  = l'~(a~1%\a)/*s - a . s .  (2.21) 
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In Section 5 we will investigate the set ~8 (J)  of all Gibbs measures for B 
and J when B is randomly chosen. Just as in the site model we can also 
define conditional equilibrium states on ~ • f~L with fixed or arbitrary a 
priori probability; the interested reader will find that these states admit a 
description which fits into the abstract theory of Gibbs random fields as 
presented in Ref. 11. However, this application does not seem to create 
interesting new problems. Therefore we prefer to stress the aspect of Gibbs 
measures on random graphs. 

3. THE SITE MODEL: RESULTS 

Here we state our results for the site model which was introduced in 
the previous section. We start with the observation that the structure of the 
set @s (J)  does not depend on the shape of S in finite regions. 

T h e o r e m  3.1. Let J be any potential and suppose that Sl, S 2 E $ 
have a finite symmetric difference S1AS 2. Then there is a one-to-one 
correspondence ~p between @s,(J)and ~s2(J) which has the following prop- 
erty: If i~s~ @s,(J) then the measures /~s, and cp(/~s, ) are equivalent on 
~s, n s2 and coincide on the tail field 

N N 
AE$0 AE$0 

The proof will be given in Section 4. 
From now on we assume that J is a ferromagnetic pair potential with 

external field h. In this case it is well known (see Ruelle~ 12) and Lebowitz 
and Martin-LSf ~3)) that for all S E $ there are two particular extreme 
elements/~s + and / t  s of Ys (J)  which are given by 

/~- = AI"slim'/As(" I +) ,  /~s = A1"slim'rS( �9 I - )  (3.1) 

(where + and - denote the configurations with the constant value + 1 or 
- 1 ,  respectively). They satisfy 

F~ = /~s  iff [Ys(J)l = 1 

iff/t~- (Ox) =/~s  (~ for all x E S (3.2) 

In particular, if h = 0 then 

]~s(J)] > 1 iff F~- (ox) > 0 for some x ~ S. (3.3) 

(Usually these facts are only stated in the particular case S = L, but the 
proofs work when S is arbitrary.) As a by-product we obtain from (3.1) and 
(3.2) that the set 

s , ( J )  = ( s  : I  (J)l = 1) (3.4) 
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is d~-measurable. Hence Theorem 3.1 implies that $1(J) is even measurable 
with respect to the tail field d~ ; here 

(~zr = A (~L\A 
AE$0 

where AL\ ~ is the o-algebra which is generated by ~L\A" Thus P($1(]) )  = 0 
or 1 whenever P is a probability measure on g which is trivial on ~ .  
According to Kolmogorov's 0-1 law this is particularly true when P = Pp 
for some p. Moreover, if J is translationally invariant then so is $ i(J), and 
then we have P($  l(J)) = 0 or 1 whenever P is ergodic with respect to the 
translation group (in particular, when P --- Pe for some p). If h v ~ 0 then 
P(g l ( J ) )  = 1; this is the content of the following theorem which will be 
proved in Section 4. 

Theorem 3.2. Suppose J is a translationally invariant ferromagnetic 
pair potential with external field h ~ 0, and P is a translationally invariant 
probability measure on ($, 8~). Then 

16s(J)l = 1 

for P - almost all S. 
Next we investigate the case when h = 0 and P is the Bernoulli 

measure Pe with respect to some p. Then we have 

Pv(S ~ $: INs(J)l > 1) = 1 iff 
(3.5) 

sup f ev(dS)ls(x)l~2 (ox) > 0 
x ~ L  

i.e., spontaneous magnetization of the dilute spin system implies that, for 
almost all S, ~s (J )  is not a singleton, and vice versa; this is a direct 
consequence of (3.3) and the 0-1 law above. 

Now we ask for which concentrations p spontaneous magnetization 
occurs. This question has a complete answer when J is the Ising potential 
(2.9) with parameters h = 0, fl > 0. This answer is possible because, for this 
J,  there is much information available on the clusters of interacting spins. 
A finite sequence ( x l , . . . ,  x,) of distinct (except that possibly x 1 = Xn) 
sites is called a path if, for all 1 < k < n, x~ and xk+ 1 are adjacent, i.e., 
diam{xk, Xk+l} = 1. It is called a path from x t o y  (or, more generally, from 
S to T) if in addition x 1 = x, x,  = y  (or x I ~ S, x, ~ T). A set C E $ is 
called connected if for all x, y ~ C there is a path from x to y in C. A 
maximal connected subset C of a given set S ~ $ is called a cluster of S. 

If J is the Ising potential and S E $ then clearly the events on distinct 
clusters of S are independent for all/*s ~ ~s (J).  Moreover, the probability 
of events on a finite cluster of S is given by the Gibbs distribution on this 
cluster with free boundary condition; in particular, iXs(O,:) - 0 for all x in a 
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finite cluster of S, and if S consists only of finite clusters then t~s (J)[ = 1. 
Therefore a dilute Ising ferromagnet does not exhibit spontaneous magne- 
tization unless there is, with positive probability, an infinite cluster of spins. 
We let 

( 3C  s } E ~ (3.6) 

denote the set of all S ~ $ which contain an infinite cluster. It is well 
known(5, 7, 14) that there is a threshold value 0 < pc(d) < 1 (depending on 
the dimension d of L) such that 

Pe(3cS) = 0 when p < pc(d) (3.7) 

and 
Pp(3C s) = I when p > p c ( d )  (3.8) 

pc(d) is called the critical probability. [Monte Carlo estimates (7' 14) give 
pc(2) = 0.590 and pc(3) = 0.307.] Obviously, (3.8) implies that for p > pc(d) 
we also have 

Pp(x E C s )  > 0 for all x ~ L (3.9) 

here {x ~ C s } is the event that x belongs to an infinite cluster of S. 
Moreover, in dimension d =  2 it is known (15) that for all p >pc(2) and 
Pp - almost all S there is only one infinite cluster in S; this cluster will be 
denoted by C s .  

From (3.7) we immediately obtain the following 

Remark 3.1. Let h = 0,/3 > 0 and J be given by (2.9). Then for all 
p < pc(d) and Pp - almost all S we have 

[ s(J)l = 1 

The next theorem is our main result. 

Theorem 3.3. Suppose J is the Ising potential (2.9) with parameters 
h = 0,/3 > 0. Let d = 2 and p > pc(2). Then 

Pp(S~$: lim / ~ ( O x ) = l  foral l  x ~ C S ) = l  (3.10) 
B~oo 

In particular, 

r176 r ( l i m  (P. dS)g~ (6~) = Pe(x ~ C s )  > 0 (3.11) 

and there is a finite critical value Be(p) such that 

Pe(S E S: I~s(J)l = 1) = 1 when /3 < tic(P) (3.12) 

and 

Pp(S E $: INs(J)l > 1 )=  1 when fl > tic(P) (3.13) 
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Moreover, for fl > tic(P) and Pp - almost all S we have 

Iz2 (Ox) > 0 for all x ~ C s 

but 

(3.14) 

inf /~s + (Ox) = 0 (3.15) 
xEC s 

Let us note that because of (3.15), the limit in (3.10) is almost surely not 
uniform in x. On the other hand, the maximal magnetization in the infinite 
cluster 

sup (Ox) 
x~C s 

is an almost surely constant function of S; this is because this function is 
invariant under translations and Pe is ergodic. 

Now we discuss some extensions of Theorem 3.3. The first observation 
is that also the dilute Ising antiferromagnet shows a phase transition; this 
follows from (3.13) by a spin reversal on the even sublattice o f  L. Further 
extensions can be obtained using the second Griffiths inequality (see, for 
instance, Sylvester (16)). A standard application of this inequality gives that, 
for all x E A ~ g 0, the expected magnetization 

mA(x ,S ,d  ) = ls(x)ySns(Oxl  + ) 

is an increasing function of S and J provided J is ferromagnetic. Thus (3.1) 
and (3.3) imply the following. 

Boroark 3.2. Let S 1, S 2 E g and suppose that J~,J2 are ferromag- 
netic pair potentials with zero external fields. Assume S 1 c S 2 and J1 < J2. 
Then 

[gs,(J])l > 1 implies ]~s=(J2)[ > 1 

Combining (3.13) and Remark 3.2 we obtain spontaneous magnetization of 
dilute ferromagnets with long-range interactions in arbitrary dimension 
d > 2. (The extension to higher dimensions uses the fact that a two- 
dimensional system can be considered as a layer in a d-dimensional system 
without interaction between parallel layers.) We put 

re(x, S , J )  = limmA(x, S , J )  = ~ -  (6x) 
A ' ~ S  " " 

when/~s + ~ ~s (J)- 

Corollary 3.1, Let d > 2, p > pc(2) and suppose that J is any ferro- 
magnetic pair potential with zero external field. Then 

fl~(J, e ) = s u p { / 3  > o: f Pe(dS)m(x,S, BJ)=0} 
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is finite and a decreasing function of J;  moreover 

Pc(S: I~s(/~)l  = 1) = 1 when /3 < flc(J,p) 

and 

Pp(S:[~s( f l J ) [>l )=l  when f l>f lc (J ,p)  

Next we use the monotonicity of the expected magnetization to replace 
the Bernoulli measures Pp by measures with nontrivial correlations. This 
gives us spontaneous magnetization of dilute systems in which the positions 
of spins and impurities are in equilibrium with respect to certain nontrivial 
interactions. We introduce an ordering between probability measures on 
(g, 6~) by writing P < Q if 

for all increasing real functions f of the form f =  g(~A) with A ~ go. 
Examples for measures P, Q with P < Q are provided by the FKG 
Holley~7) inequality. For instance, let 

: $ 0 ~ R  

be a function which satisfies 

@(X) >/0 when IXl >~ 2 

and 

I+(X)[ < oo for all x E L 
X ~ x  

define the set g (~P) of Gibbs measures for �9 on ($, ~) as usual by means of 
the Hamiltonians 

H~(SI r ) = - ~ * (X)  
X c S U  T, X N A ~ r ~  

(where A e S 0, S c A, T C L\A). Let 0 < p < 1 and suppose 

P .< inf log 1 - p x~L 

Then 

Pp < a for all Q ~ ~(~p) 

In particular, if Pl < P2 thenPp, < Pe2" 
Inserting the increasing functions mA(x, . ,J) into the definition of 

" < "  and letting A tend to infinity we obtain the following corollary. 

Corollary 3.2. Let d > 2. Assume J is a ferromagnetic pair potential 
with zero exernal field and P is a probability measure on ($, C) such that, 
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for some p > p,(2), Pe "< P" Then for sufficiently large/3 we have 

inf  f e(aS)m(x,S, /3j) > o 

and 

P(S s:lss( )l > 1)>0 

In particular, tic(J, p) is a decreasing function of p. 

It should be mentioned that the monotonicity properties of re(x, S,J) 
and tic(J, p) were already observed by Griffiths and Lebowitz/6) Further 
extensions of Corollary 3.2 can be obtained using the following device: 
Suppose P has a representation 

e = f w ( d O ) O  

by a probability measure W on the set of all probability measures on $ ; 
assume 

w(a:Pe< O fo rsome p > p c ( 2 ) ) > 0  

Then the statement of Corollary 3.2 remains true. For  instance, this remark 
applies to symmetric measures P with f~x dP > pc (2) or, more generally, to 
certain canonical Gibbs measures as studied in Ref. 18. 

We conclude this section with some remarks. Theorem 3.3 might be 
considered as a very first step of the program of describing all Markov 
random fields on a countably infinite graph or, at least, on all subgraphs S 
of L. We have seen that the phenomenon of nonuniqueness is not restricted 
to the well-studied case S = L, but occurs whenever S contains a typical 
realization of P_ for some D > oc(2); this is a partial answer to a question 
raised by Dobrushin3 ]9) However' the problem of determining all extreme 
points of ~s (J )  remains open. In particular, it is not obvious whether in 
dimension d = 2 

when S c L and J is the Ising potential; it is a famous result of Aizen- 
man (2~ and Higuchi (20 that this holds when S = L, but their proofs need 
all symmetries of L which apparently cannot be replaced by the symmetries 
of Pp. Thus even for "typical" S the problem is unsolved. 

However, one fact carries over to arbitrary S. In the case S = L it was 
shown by Coniglio et al. (22) and Russo (23) that spontaneous magnetization 
gives rise to the existence of an infinite ( + )  cluster, i.e., of an infinite 
cluster of {x E L: ~ = 1). Their arguments can be extended to cover the 
general case. Therefore we may state [letting {3C + ) denote the event in 
that an infinite ( + )  duster  exists] the following. 
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Remark 3.3. Let d > 2 and S ~ $ and suppose J is of the form 
(2.9). Assume that 

I~s(J) l  > 1 

for h = 0 and some flo > O. Then 

~ OC g) = 1 

whenever h > 0 and fl >i to  - h / 2 d .  

This shows that a randomly dilute Ising ferromagnet with parameters  
p >pc(2)  and fl > t i c ( P ) -  h / 2 d  almost surely contains an infinite ( + )  
cluster. 

4. THE SITE MODEL: PROOFS 

We start with the proof of Theorem 3.3. Thus we assume d = 2 and 
suppose that J is the Ising potential with h = 0 and some given fl > 0. The 
main idea is a generalized version of the well-known Peierls argument. So 
we have to define contours. Let S E $ be fixed. 

First we introduce the dual lattice 

L ' =  L + ( �89 

and the set 

E '  = (e '  C L ' :  d i ame '  = 1} 

of edges between adjacent sites of L ' .  Each edge e ' =  { x ' , y ' }  ~ E '  is 
visualized by the line in R2 which connects x '  and y ' .  This line crosses a 
unique line which characterizes an edge e ( e ' ) ~  E. Conversely, e'(e) is 
defined by e(e'(e)) = e, e E E. We say that two vertices x E L and x '  E L '  
are contiguous if x '  = x + (+_ �89 + �89 or, equivalently, if x '  ~ e'(e) for some 
e ~ E with x E e. Two sets D ~ L and D '  C L '  are said to be contiguous if 
there is a pair x, x '  of contiguous vertices with x ~ D, x '  ~ D ' .  

A finite sequence c = ( x ~ , . . . ,  x',) of distinct (except that possibly 
x~ = x;,) sites of L '  is called an S polygon if, for all 1 < k < n, {x;~,x~+l} 

E '  and e((X'k,X'k+l}) C S. c is called an S polygon from x E L t o y  E L 
if x '  1 is contiguous to x and x'. is contiguous to y,  and an S polygon from 
D 1 C L to D E c L if c is an S polygon from a site of D~ to a site of D 2. 
Finally, an S polygon c with x] -- x'. is called an (S, 0) contour, 

To define (S, n) contours for n > 1 we need the notion of a *cluster. 
Two sites x = ( x l , x  2) a n d y  = (yJ, y2) of L are *adjacent if Ix 1 - y l  I < 1 
and Ix 2 -y21  ~< I. A set D c L is called *connected if for all x, y ~ D 
there is a finite sequence (x 1 . . . . .  x.) in D such that x = x l, y = x .  and, 
for all I < k < n, x k and Xk+ l are *adjacent. A maximal *connected subset 
of L \ S  is called a *duster of LKS or shorter an S cluster. An alternating 
sequence g = ( c l , D  I . . . . .  G , D . )  of mutua l ly  disjoint  S po lygons  
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+ + + + + + 

+ - -  + 0 

+ + + 

+ 0 + 

+ 

+ 0 

+ 

+ 0 -- -- 0 -- 0 + 

+ + O - -  - O + + 

+ + - -  + 

I 
O + 

+ + -F + + 

Fig. 1. A configuration ~ of spins ( +  or - )  on a set S and impurity atoms (0) on L\S .  The 
impurity sites fall into three *clusters which, together with three S polygons (solid lines), form 
an (S, 3) contour g. g is realized by ~, and the circuit at the boundary of the figure defines an 
S region containing g. 

e l , . . . ,  c n and pairwise distinct finite S clusters D 1 . . . . .  D n will be called 
an (S, n) contour if, for all 1 < k < n, c~ is an S polygon from D k_ 1 to D~ 
(where D O =~ Dn); see Fig. 1. 

Now let g be any S contour, i.e., an (S, n) contour for some n I> 0. We 
say g is an (S, n) contour in A ~ $0 if all S clusters in g are subsets of A 
and every vertex of each S polygon in g is contiguous to a site in A. g is 
said to surround a site x E L if for each A containing g and each path w 
from x to L \ A  the following holds: Either w contains sites of the S clusters 
in g, or w contains an edge which crosses an S polygon in g. Finally, we say 
that g is realized in a configuration w ~ s  if ~y, :~ ~y2 whenever (y,  Y2} 
= e(e') for some edge e' in any S polygon of g. 

Next we introduce particular regions in L. A path (x I . . . . .  x,) in L is 
called a circuit if x 1 = xn. Each circuit has an interior in the obvious sense 
(such that the circuit and its interior are disjoint). A set A E S o is called an 
S region if A is the interior of a circuit in S. 

I . e m m a  4.1. Let S E g. Suppose x belongs to an infinite cluster of S 
and A is an S region containing x. Assume that w ~ s  with ~x = - 1 and 
Ws\ A ---= 1. Then there is an S contour in A which surrounds x and is 
realized in ~. 
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Proof. By assumption there is a circuit 0A in S such that A is the 
interior of 0A. Moreover, there exists a cluster C of {y E S: % = - 1) with 
x E C c S N A. We let Os C denote the outer boundary of C in S, i.e., the 
set of all vertices in the infinite cluster of c S \  C which are adjacent to a site 
of C; here C s is the infinite cluster of S containing x. Clearly, 0A c C s .  

First we observe that each path from x to 3A either meets A \ S  or 
crosses an edge of 

B' = O{  e ' ( {y , ,  y2))  : {Y],Y2) ~ E, y] ~ C, y 2 ~ OsC ) 

Indeed, assume the path is contained in S; then the "last exit of the 
path from C"  defines an edge {Yl, Y2} ~ E with Yl ~ C, Y2 E 3sC. More- 
over, it is easily verified that if x' E B '  then B' contains at most two sites 
which are adjacent to x'. Hence B '  can be decomposed into finitely many S 
polygons c l , . . . ,  G. We need to show that these S polygons are the S 
polygons of an S contour. Then, by construction, this S contour will be 
realized in o~. 

If n = 1 and c 1 is an (S, O) contour then we are done. In the opposite 
case, each S polygon in B'  has precisely two end points. Each such end 
point is contiguous to an S cluster. These S clusters are denoted by 
D l , . . . . ,  D,,. Since A is an S region, D ltA �9 �9 �9 U D m C A. 

Next we consider a fixed S polygon c k in B'.  Its two end points are 
contiguous to two distinct sites x ~ D i and y ~ Dj, say. If D i = Dj then 
there is a path in A \ S  from x to y;  since c k is contiguous to C s we 
necessarily have m = n = 1, and (cj,D1) is an (S, 1) contour surrounding x. 

Now let m > 1. Then from the preceding we know that each S polygon 
in B'  is an S polygon from some Dj to a different D k. Conversely, each D k 
is contiguous to precisely two distinct S polygons in B'. For suppose first 
that D k is contiguous to three distinct S polygons in B'.  Then we can find 
three distinct paths from x to 3A, each path crossing one of these S 
polygons. The three paths define three regions in A, two of which must 
contain sites of D k. This is impossible since D k is *connected. On the other 
hand, there exist two paths in C s from x to a vertex of 3A such that D k but 
no other Dj is situated between them. At their last exit from C, both paths 
cross S polygons in B'. These S polygons are contiguous to D k and distinct 
since otherwise m = 1. Now it is immediate to conclude that m = n, and 
(up to a proper numbering) (c l ,D l . . . . .  G,D, )  is an (S,n)  contour sur- 
rounding x. �9 

Now we turn to the proof of Theorem 3.3. We start from the estimate 

~ / S n s ( G =  - l l + ) ' < <  E ~ /Sns (Oa :g i s r ea l i z ed in~  (4.1) 
g = gs,  A,x 

which is valid under the hypotheses of Lemma 4.1; the sum extends over all 
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S contours g in A which surround x. The right-hand side of (4.1) has an 
upper bound in terms o f  the length l (g )  of g; l (g )  is the total number of 
edges in all S polygons of g. This upper bound is obtained by a straightfor- 
ward modification of the well-known Peierls estimate (which is based on a 
spin reversal at all sites of A N S which are surrounded by g; see Grif- 
fiths.(24) 

I.emma 4.2. Let J be given by (2.9) with h = 0 and fl > 0. Let S ~ 5 
and suppose A is an S region and g an S contour in A. Then 

s 7A n S (r : g is realized in co I + ) < r t(g) 

where r -- e-2t~. 

Now let p > pc(2) and P = P p  be the Bernoulli measure on $ with 
respect to p. It is known (see the proof of Theorem 2 of Russo (15); compare 
also the proof of Lemma 4.4 below) that for P - almost all S the following 
holds: Every A ~ So is contained in the interior of a circuit in S, i.e., there 
is an increasing sequence A n of S regions with U A, = L. (In particular, 
this shows that almost surely there is only one infinite cluster in S.) 
Combining this and (3.1) we obtain from (4.1) and Lemma 4.2 that 

l{xec~) /~"  (ox = - 1) < ~ r '(g) (4.2) 
g= gs,x 

for all x E L and P - almost all S; the sum extends over all S contours g 
surrounding x. We estimate the expectation of this sum. 

Fix a n y x E L .  F o r S ~ S  we let 

Ns(O,1)  

denote the total number of (S, 0) contours of length 1 which surround x. 
Similarly, for n/> 1 we let 

N s ( n , 1  , . . . . .  l , )  

denote the number of all ( S , n )  contours ( e l , D  l . . . . .  ~cn, D, )  which sur- 
round x and are such that, for all 1 < k < n, c k contains l k edges. Then 
(4.2) gives 

f ( x e c s ) e ( d S ) l z ~  (o x = - 1) 

< f e(dS)[ /Nx(O,Z) 

+ ~ ~,  r t,+ "'" +t,,Ns(n,l t . . . .  , l , ) ]  (4.3) 
n ) l  l l , . . . , l n > l  J 

We need to show that the right-hand side of (4.3) tends to zero as r tends to 
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zero. Indeed, this would imply 

lin, f ~ ' ( d S ) ~ ?  (~x) 
fl--> vo 

= lim f 1 2tL~-(o x 1)] P(x~C s) (4.4) 

this is the basic assertion (3.11) of Theorem 3.3. Clearly, 

~,  Ns(O,l)r'< ~ 131r ' (4.5) 
l>11 1>11 

and the right-hand side vanishes in the limit r--> 0. 
Next we fix n >1 1, l I . . . . .  l, >/ 1 and consider 

f e t d S ) N s ( n , l  , . . . .  , l . )  

let us write 

N s ( n ,  ll . . . .  , In) < ~.~ ~ . / I s ( y  I . . . . .  .yn,X2, . . . , x , , k , )  (4.6) 
kl  . . . . .  k,, ~ 0 

Here the primed sum extends over all x 1 . . . . .  x.,  y~ . . . .  ,y~ E L and all L 
polygons c~ . . . . .  c~ with the following properties: 

(i) the Ll-type distance )x~ - x I of xj and x satisfies ]x~ - x I << 
ll + . . .  + l~ + k l  + . . .  + k, + 2 n ;  

(ii) for all 1 4 i < n, c; is an L polygon of length l~ from x i to y~; 
(iii) for all 1 4 i < n, IX~+l -Y~I = k .  

The function I s in (4.6) is defined as follows: I s = 1 if there are 
mutually distinct S clusters D 1 . . . . .  D, such that 

(I) for a l l l < i < n ,  { y i , x i + l } C D  i 
(II) yn E D,, and D, contains a site at distance k, from y, .  

Otherwise we put I s, = 0. In order to estimate the expectation of I s we 
introduce random sets 

a (y )  : S ---> So u {0) 

as follows: If ~ y -  0 then h(y)  is (he *cluster of (k  ~ L :~k = 0) which 
contains y;  otherwise h(y)  - 0. Accordingly, we let {x E h(y)} denote the 
event that x belongs to A(y); we write (d(y) />  k) to denote the event that 
h (y)  contains a vertex at distance k from y. 

Lemma 4.3. Let n>/ 1, k n> /0  and y] . . . . .  y , ,  x 2 . . . . .  x , ~ L .  
Then 

f e (  dS )I  s (Yl . . . . .  y~, x2, . �9 �9 x,,  k~) 

< e ( x  2 ~ h ( y , ) ) . . .  P(x,~ ~ A ( y , , _ ~ ) ) P ( 8 ( y , )  >i k,~). 
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The proof is postponed until after Lemma 4.4. Combining (4.6) and 
Lemma 4.3 we obtain 

f e ( d S ) N s ( n , t  , . . . . .  In) 

< ~ ~'P(x2 E A(yO)...  e(x. e a(y._ 0)e(a(y.) /> kn) 
kl  . . . . .  kn>~O 

< ~ 4(l~+ . . .  + l , + k  l+  . . .  + k , + 2 n )  2 
k I . . . . .  k . > O  ){n , ) 
• ( 8 . 3 " - ' .  2) I-I (4k, + 1) P(6(o) >1 ki) 

i=1 i=1 i=1 

<(22) n ~ [ l]+ ' ' "  + l . + ( k , +  1)+  " ' '  + ( k  n+ 1 ) + n ]  2 
k I . . . . .  k .  >10 

• 3 l , +  +l~ f[ ((ki 
i=1 

Now we use the inequality 

(Jr + 

which is valid whenever j]  , 

where 

+ I)P(6(0)  >/ ki) ) (4.7) 

f e(aS)N~(n, 

�9 . .  +jm) 2<< m 2 j 2 . . . j ~  

. . . .  j'~ t> 1. We obtain 

l 1 . . . .  , In) <~ 4(n + 1)4K" f l  (/i23t~) 
i=1 

(4.8) 

K = 22 ~'~ (k + 1)3p(~(0) >/ k) (4.9) 
k>0 

Therefore the second term on the right-hand side of (4.3) has the upper 
bound 

{ 1 4 ~ (n + 1) 4 g Z 12(3r) t (4.10) 
n~>l 1/>1 

Suppose we knew K was finite. Then (4.10) tends to zero as r tends to zero. 
Combined with (4.5) this gives (4.4), and the proof of (3.11) is complete. 
The assertion K < o0 follows from the next lemma. 

I .emma 4.4. Supposep >pc(2) a n d p  is the Bernoulli measure on $ 
for p. Then for all m/> 0 we have 

E k"e(8(O) >1 k) < 
k>~l 

Proof. This result is implicitly contained in the proof of Theorem 2 
of Russo, (15) which is based on the ideas of Seymour and Welsh. (25) Let 

A(j )  = {x = (xl, x 2) ~ L : Ix~l < j, Ix21 .< j )  
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Choose any 0 < E < 3 -m-l. Russo proves that there is a number n = n(p) 
such that, for all j />  1, the set 

(xeA(Vn)\A(V-'.) : r  

contains a circuit surrounding the origin with probability larger than 1 - e. 
This implies that 

P(A(0)\A(Y,)  ~ O) < eJ 

for all j >/ 1. Now we write 

E kmp(8(O) >~ k) < 2 m+' E kme(8(O) >" 2 k -  l) 
k~l  k~l  

3j+ln 
< ~ ( 2 n ) m + l w 2 m + l E  E k m p ( A ( O ) \ A (  k -  1) 4=0)  

j ~ O  k = 3 J n +  l 

The last term is dominated by the convergent series 
oo 

(6n)"+l  ~ (3m+ lee 
j=0 

This proves the lemma. �9 

Proof of  I_emma 4.3. By definition we have 

f P(dS . ,  ) I s (Y l ,  . . . .  y.,  x 2, . . x., k.) 

= ~ e (A(y , )  = Dt . . . . .  A(y._l)  = Dn_,,8(yn) >>- k.) 
D t , �9 . . , Dn-I  

(4.11) 

the sum extends over all *connected finite sets D . . . .  , D._ 1 with the 
following properties: The sets D e U By (i :/:j) are not *connected, and 
(yi, Xi+l) C Di, Yn ~ Di for all i. The right-hand side of (4.11) can be 
written as 

E P ( A ( y , ) =  D , ) E P ( A ( y 2 ) =  D 21 a(y,)= O1) 
D1 D2 

�9 . .  E = D . _ , I A ( y , )  = D,  . . . . .  = 
Dn - 1 

• e (6(y . )  >1 k. I a(yl) = Dl, �9 �9 �9 A(y._ 1) = D._ l) 

If D C L then we let O*D denote the set of all vertices of L \ D  which are 
�9 adjacent to a site of D. Then the last factor equals 

P(8(Y.)  > k. l~D,U ... uo._, ~-0~ ~0*(o,u-.. uDo_,) -= 1) 

In this expression the event (8(yn) >1 k.) can be replaced by the subevent 
thaty,  belongs to a *cluster of 

"(z~(D,D . . .  U D._,)U a*(D,U " . - U  D._ , )  : ~ z = 0  ) 
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which also contains a site at distance k, from y, .  This event is independent 
of the event in the condition. Therefore the conditional probability above is 
less than P(8(yn) > k,). A similar argument shows that for all 1 < m < n 

~_~ P(A(ym) = Drn [A(Y0 = Dl . . . . .  A(ym-1) = Din-1) 
D,n 

= e(xm+~ ~ A(ym) IA(..Vl) = O t , ' ' ' ,  A(ym-1) = Din-l) 
<. 

Now the conclusion of Lemma 4.3 is obvious. �9 

Having completed the proof of (3.11) we turn to the proofs of the 
further assertions of Theorem 3.3. 

Proof of  (3.10), (3.12), and (3.13). Because of Griffiths' second 
inequality d6) /~-(ox) is an increasing function of fl; this was already 
observed in Remark 3.2. Therefore (3.12) and (3.13) follow from (3.5), 
(3.11), and the 0-1 laws which were discussed in the paragraph below (3.4). 
Moreover, 

lim #s + (a~) 
fl---> oe 

exists for all x E S  @g; thus (3.11) and the dominated convergence 
theorem imply 

f ( ~ e c s ) P ( d S ) [ 1 -  B-~lim /~s+ (o~)] = 0  

for all x @ L. This gives 

P ( S :  lim /~s + ( o x ) < l  
X f l ~ o o  

and hence (3.10). �9 

Proof of  (3. 14). 

for some x ~ C  s ) = 0  

From (3.3) and (3.13) we know that for fl > tic(P) 

p(s  sup 
xeC s 

Therefore it suffices to prove that if S @ g and x, y E S are adjacent then 

. ;  (Ox) = 0 impl ies  (oy)  = 0 

To show this we fix an ( with 0 < ( < B and let pc denote the measure 
/ ~  E ~s (J ' ) ,  where 

j~. = [ Jx when X v a { x, y } 

I f l - e  w h e n X =  {x ,y}  

J '  is a ferromagnetic pair potential. Clearly, 

I~- (Ox) = p'(o x exp(,OxOy))/~'(exp((oxoy)) 
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Using the identity 

we obtain 

exp(co~oy) - coshc + OxOy sinhE 

coshe t,~(o~) + sinhe 1,~(oy) = 0 

Griffiths' two inequalities give 

0 < ~(ox)  < ~ (ox) = 0 

Hence l,~(Oy) = 0 and therefore 
�9 E 

/~-(oy) = hmp co ~ = 0 [] 
~ - ~ 0  \ y j  

Proof of (3. 15). We put 

Q= {x = (x,,~2) e L :~' >~ 0,~ 2 > 0} 

and let 

{0ec~ ~ 

denote the event that the origin belongs to an infinite cluster of 

(xeQ:~x=l) 

Theorem 2 of Russo, (15) combined with a straightforward adaptation of 
Theorem 3.2 of Smythe and Wierman (25) to the present context, gives 

P (0  ~ C~ ~ Q) > 0 

Next we fix an integer N >/ 1 and consider the event 

A = {~A-- 1 , ~ - 0 )  

where 

A =  {(k, 0 ) : - N ~ <  k < 0 )  

and 

A =  ( ( k , _ l ) : - N - <  k < 0 )  U ( ( - N - l , 0 ) )  

Obviously we have P(A) > 0; thus 

P(A n ( 0 ~ c ~ Q ) ) > 0  

since Q and A U h are disjoint. 
Now let S ~ A N (0 E C sn  Q). Then A is contained in an infinite 

cluster of S, and S n A = 121. For fixed x -- (k, 0) E A we put y -- (k + 1, 0) 
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and V = ((j ,  O) : - N < j < k}. Then 

= d#s YV(ax[ + ) +  d f f 2 y S ( o x [ - )  %=]') oy=-l} 

= 7s(ax [ +)# :~  (ay) (4.12) 

since 

I + ) =  -vg(oxl-) 
On the other hand, we have 

ys (ox  = 1 I + ) / ( 1  - ,IS(ox - 1 I + ) )  

= ySv(o x = 11 + ) / y s ( o ~  = 11 - )  < e 4B 

and therefore 

7s(o~[ +) < q =  (e 4/~- 1 ) / (e  4B + 1 ) <  1 

By iteration we obtain from (4.12) and (4.13) 

i~ ~- (O(_N,O)) <~ qN 

Thus we have shown that for all N /> 1 

P(S: inf # ~ ( O ~ ) < q U ) > 0  
xeC s 

This gives (3.15) because 

S--> inf ~ "  (Ox) 
x@CS~ 

(4.13) 

is invariant under translations and therefore P -  almost surely constant. 
[] 

Now we turn to the uniqueness theorem 3.2. 

Proof  o f  rhoorom 3.2. Because of (3.2) it is sufficient to prove 

P ( S  : I~s (Ox) = #s + (ox) for all x E S )  = 1 

Since 

(this comes from the F K G  Holley inequality, see Refs. 12 and 13), we only 
need to consider the quantities 

o+ = f e(aS)ls(x).2 o_ = f e(aS)ls(x) . i  (Ox) 

(which are independent of x) and to show 0+ = 0 - -  This can be done 
following the lines of Lebowitz and Martin-L6f(13): 0+ and 0 -  are 
considered as functions of the external field h; they are identified as the left 
and right derivatives of a convex function F of h which turns out to be 
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differentiable at all h v ~ 0. For the sake of completeness we sketch the 
argument. Let 

F~. = (e(dS)lAl-'log ZSn (~ s 
J 

and 

F = lira F~ 
AtL 

where to E at. and the limit A]'L is taken over cubes. The existence of F 
and its independence of the choice of to can be verified by the same 
methods as in the case when P is the unit mass on L; see Griffiths and 
Lebowitz (6) for the necessary modifications. Differentiation with respect to 
the external field gives 

O--~F~= P(dS)IA1-1 2 ySns(~176 
x ~ A R S  

Both the F K G  Holley inequality and Griffiths' second inequality show that 

s  Ans(ox I +) 
is a decreasing function of A. Thus we obtain [letting A(n) denote the cube 
of side length (2n + 1) which is centered at the origin] 

O+ < lira ~h FA~.) 
n---)  oQ 

= lira [ A ( n -  nl/2)1-1 
n---~ oo 

S - x  • • fe(dSlls-x(O)Y[A(.)-~ln(s-~)(~ +) 
x @ A ( n -  nl /2)  a 

< lira fP(dS)ls(O)vS(.,/2/2_,)ns(Oo[ +) 

= p +  

Similarly. 

p_ = lim ~h F~n) 
n - - )  oo  

Moreover. all F~ (and therefore also F)  are convex functions of h; hence 

p-  = O+ = ~h F (4.14) 

for all h at which F is differentiable. These are all h 4 = 0. To see this one 
can use either the Lee-Yang circle theorem (~'26) or, as observed by 
Preston, (27) the GHS inequality. (16) The latter asserts that YASns(O~l + )  
(and therefore also P + ) is a concave function of h in the region h > 0. Thus 
P+ is continuous in this region which, combined with (4.14) and the 
convexity of F, implies (4.14) for all h > 0. Since F(h)= F(-h) Theorem 
(3.2) follows. [] 
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Finally we give the proof of Theorem 3.1. 

Proof of  Theorem 3.1. Here we use a technique which is similar to 
that  of Bricmont et al. (28) Without  loss of generality we may  assume that  
$2 = Sl U (x} with x ~ Sl ;  moreover, we suppose [Sll = oo because other- 
wise the theorem is trivial. For  each A 1 C $1 we write A 2 = A 1 tO (x) .  

(1) Let /~l E ~s,(J). The backward Martingale convergence theorem 
implies that  for /~ - almost all ~1 and all finite A~ c S I, ~ ~ f~A,, and 
a E ( - 1, 1 ) the limits 

~l(OAl = ~1s li~sI'/S~(O'AI = ff [ as,\a,(~l) ) (4.15) 

and 

"/2(ax = a, oA, = ~lw,) 

= a,l"s,lim ~/s~(a x = a, aA, = ~ ] as~\~(ta,) ) 

= l i ~ v S ' ( l { % = ~ } h ~ l o s , \ a , ( ~ O ) / V S , ( h  , + h_,lOs,\a,(~l) ) (4.16) 

exist; here 

ha(~)=exp(  ~_~ Jxa~ x'(x}) 
\ X ~ x  l 

Furthermore,  

We define ]s ~(/'tl) by the equation 

.2(ox = a, aA, = : )  = f .,(do ,)v2(ox = a. ~1o~1) 

It is easily verified that ~t 2 ~ ~S2(J). 
From the inequality 

exp(- [ ]J i [x)  < h~ ~< exp [IJl[x 

we obtain 

exp(-2] lJ l [x)  tq(OA, = if) < /~2(OA, = ~) < /Xl(OA, = ~)exp(2l]Jllx) 

for all A 1 and ~; thus/71 and/~2 are equivalent on ~ 
(2) Next  we use the fact that ~s,(J) is a simplex, i.e., each #1 ~ ~s,(J) 

has a representation 

= f 
by a probability measure m on the extreme elements of ~s,(J) (see, for 
instance, Dynkin  (29) or Theorem 2.1 of Preston (~ l)). It follows immediately 
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from the definition of ~ that 

�9 (~'1) = fm(dh)~(h) 

Each extreme measure v I in ~s,(J) is trivial on the tail field on f~s, ; hence 
the equivalence of fi'l and ~p(171) implies 171 = cp(~l) on 

AESo 

This  gives/ 1 = o n  
(3) Suppose /~ and /~'1 are distinct elements of ~s,(J). Then it is 

known ~H) that even the restrictions of #1 and/~'1 to the tail field are distinct. 
Hence from the preceding we conclude cp(/~l) v~ ~P(/~'0, i,e., cp is injective. 

(4) A similar procedure as above gives us for each /~2 ~ ~s:(J) a 
measure /t 1 ~ ~s,(J) such that /~1 =/~2 on gY~. Then cp(Fl)=/~: because 
~(t~t) and t~2 belong to ~s:(J) and coincide on tail events. Hence ~ is 
surjective. �9 

We conclude this section with the following proof. 

Proof of (2.16). The "only if" part is obvious. If J is a ferromagnetic 
pair potential then the "if" part follows immediately from (3.1) and (3.2). In 
the general case we start from the following fact: If S,---> S (in the usual 
topology on $ which comes from the identification S = (0, I)L) then each 
weak limit point of any sequence /7, with /~, E Ys. ( J )  belongs to Ys (J). 
Consequently, for each closed set F of probability measures on ~ the set 

{S ES :~s(J)NF~O) 
is closed and thus (6~. Therefore the conditions of a measurable choice 
theorem of Kuratowski and Ryll-Nardzewski (see the Corollary on p. 56 of 
Hildenbrand O~ are satisfied; this states that there is a sequence of 
measurable mappings S -->/~(s ~) from $ (with 6~) to the set of all probability 
measures on (~, ~ (with the o-algebra generated by the weakly open sets) 
such that, for each S, Ys (J )  is the closure of (/~(s ~) : n > 1). In particular, 

(S E~ : [~s(J)[  > 1 ) =  {S ~ $ :  ~(s ~) :/:/~(s 1) for some n) 

is measurable. Now assume that 

P(S ~ ~ : I~s(J)l  > 1) > 0 

Then there is an n (say n = 2) and an A E ~ such that P(B) > 0, where 

s = { s > 

Put 
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and 

Then/~(A) > fi'(A), and by construction/7,/7' ~ ~p (J). [] 

5. THE BOND MODEL 

An inspection of the proofs in the previous section shows that, up to 
minor modifications, all results for the site model carry over to the bond 
model. We merely state the main results. 

Theorem 5.1. Let J be any potential and B 1, B 2 @ B with IBIAB21 
< ~ .  Then there is a bijection (p from ~s~(J) to ~82(J) such that, for all 
/~B, E ~B~(J), the measures/tB, and (~(/tn,) are equivalent and coincide on 

A ff~\A 
A~$0 

Now suppose J is a ferromagnetic pair potential. Then each ~8 (J)  
contains two particular measures #~ and/~-  which satisfy (3.1), (3.2), and 
(3.3) with S replaced by B. These are equal when J is translationally 
invariant with h :~ 0 and B is a typical realization of a stationary probabil- 
ity measure on ~ : 

Theorem 5.2. Let J be a translationally invariant ferromagnetic pair 
potential with nonzero external field and P a translationally invariant 
probability measure on ~ .  Then 

for P - almost all B. 

Next we restrict ourselves to the two-dimensional case and consider 
the Ising potential J defined by (2.9) with h = 0. Here the results for the 
bond model are somewhat more complete than those for the site model 
because the bond percolation problem on the square lattice is better 
understood than the site problem. We say a set C ~ $ is B-connected if for 
all x, y E C there is a path ( x  z . . . .  , x , )  from x to y such that, for all 
1 < k <~ n, (Xk, Xk+l} ~ B; such a path is called a B path. A maximal 
B-connected subset of L is called a B cluster. We let 

denote the set of all B ~ @ for which an infinite B cluster exists. In 
dimension d = 2, Harris (30 has shown that 

r  = 0 when p<~ (5.1) 
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and recently Kesten (32) has succeeded in proving the converse 

Pp(3C~) = 1 when p >�89 

or, equivalently, Pe(x ~ C e) > 0 for all x when p >�89 here 

(5.2) 

(x E 
denotes the event that x belongs to an infinite B cluster. Moreover, it is 
known(31, 25) that for Pp - almost all B there is only one infinite B cluster; 
this will be denoted by C~.  

Remark 5.1. Let d = 2 and J be given by (2.9) with h = 0 and/3 > 0. 
Then for all p < �89 we have 

= 0 for all x 

and 

P p ( e : l g s ( J ) l  = 1) = 1 

However, for p > �89 spontaneous magnetization occurs: 

Theorem &3. Suppose d = 2 and J is the Ising potential with h = 0 
and fl > O. Let p > �89 Then 

P , ( B ~ @ :  lim /~ f f (Ox)= l fo ra l l  x ~ C ~ ) = l  
/3~oo 

In particular, 

lim ~P (dB ~g~ (ox) = Pp(x e C~) > 0 for all x e L 
B - ~  J P~ J 

and there is a critical fl~(p) < oo such that 

Pp(g E r i l B(/)l = l )  = 1 when fl < fl~(P) 

and 

Pp(B E �9 : INs(J)I > l) = 1 when fl >/3~(p) 

Moreover, if fl > fl~(p) then for Pp (almost all B) we have 

/L + ( o x ) > O  for all x E C ~  

but 

inf ff• (ax) = 0 
x~C~ 

Clearly, also in the present context the second Griffiths' inequality can be 
used to prove extensions of Theorem 5.3 which are similar to the 
Corollaries 3.1 and 3.2; their formulation is straightforward and therefore 
left to the reader. Also we do not dwell on the bond model counterpart of 
Remark 3.3. Instead we introduce some concepts which, in the proof of 
Theorem 5.3, replace those of Section 4. 
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First we define B regions for a given B ~ 9 .  A B path ( x ] , . . . ,  xn) in 
L is called a B circuit if x] = x n. We say A E g0 is a B region if A is the 
interior of a B circuit. If p >t ~ then for P e -  almost all B there is an 
increasing sequence An(B ) of B regions with (.JnAn(B)= L, see Lemma 
(3.6) of Smythe and Wierman (:s~ . 

Next we define B contours. B determines a unique subset B '  of the set 
E '  of edges in the dual lattice L'  by  the relations 

B ' =  (e ' (e)  : e ~ B }, B = ( e ( e ' ) : e ' ~  B'}  

We define B'  paths, B '  circuits, and B '  dusters in L' just as we do B paths, 
B circuits, and B clusters in L. 

Alternatively, a B '  path is also said to be a B polygon, a B '  circuit is 
called a (B,0) contour, and (L'\B') clusters in L'  are called B clusters. A 
(B,n) contour, n >/ 1, is an alternating sequence g = (cl,D],..., cn,D ~ 
with the following properties: D I . . . .  , D n are pairwise distinct finite B 
clusters in L'  and, for all 1 < k < n, c k is a B polygon from a site of D k_ 
to a site of Dk (where D O --= Dn); see Fig. 2. 

From these definitions it should be clear how the arguments in the 
proof of Theorem (3.3) can be fitted to the present context. Actually, the 
analog of estimate (4.7) is simpler than (4.7) because the concept of 
contiguity is not involved. The counterpart of Lemma 4.4 follows from the 
final remark in Section 3.6 of Smythe and Wierman (25~. 

+ + + + 

iiiiiii  
+ ~ q- + 4- 

+ + + i + 

+ + 

�9 i 
+ + -_ + - + + 

a 
i 

/ . . Q O e O O � 9  

q- + 4- w q- 

Fig. 2. A configuration o~ of spins ( +  or - )  on the square lattice, and  a set B of bonds; the 
edges  in B are those which are not crossed by a dotted line. The dotted lines fall into three 
clusters which, together with three B polygons (solid lines), form a (B, 3) contour g. g is 
realized by ~0, and the B circuit at the boundary of the figure defines a B region containing g. 
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